Simulating the Hydrological Response of Rock Glaciers to Climate Change with GEOtop C21B-05 Rock glaciers are creeping bodies of ice-rich permafrost typical in cold high-mountain environments. In the arid and semi-arid Andes, and presumably other dry high-mountain areas, rock glaciers are considered more significant than glaciers as a water resource. The active layer of rock glaciers, and other seasonally frozen ground, in more temperate high-mountain climates may also represent an important contribution to summer baseflow in lowland rivers. The multi-decadal evolution of rock glacier permafrost and its relationship to climate is largely unknown and presents a massive challenge to assess in-situ due to limited spatial and temporal observations, the resource-intensity of geophysical observation, and lack of meteorological observation in most rock glaciers areas. As a step in addressing these knowledge gaps, this work simulates a rock glacier based on the Murtel-Corvatsch rock glacier in the Upper Engadin, Switzerland – the most intensively studied rock glacier in the world. Three decades of high-quality hourly climate data are used to generate 50 year time-series of synthetic meteorological observations with the Advanced WEather GENerator (AWE-GEN) under the observed climate and 8 additional climate change scenarios. One-dimensional simulations of rock glaciers are conducted with the combined hydrological and energy balance model GEOtop, which is forced by the synthetic meteorological data. The experimental approach consists of three parts: 1) establishing a realistic rock glacier model under the observed climate, 2) subjecting the rock glacier to meteorological forcing from climate change scenarios, and 3) testing the sensitivity of the model to input parameters. For the mountain cryosphere community and many lowland populations around the world, this work represents an important outcome in developing the understanding and methodologies pertaining to the role of seasonal ice and permafrost in the hydrological cycle of high mountain watersheds. J. Apaloo1, A. Brenning1, S. Gruber2 1. Department of Geopgraphy & Environmental Management, University of Waterloo, Waterloo, ON, Canada. 2. Glaciology, Geomorphodynamics & Geochronology, University of Zurich, Zurich, Switzerland.